
Model-Based Data Collection in Wireless Sensor
Networks

Geeta Gupta*, Vinod Khandelwal**, Vikas Gupta***

* Department of Computer Science, Indraprashtha College for Women(University of Delhi)
31, Sham Nath Marg, Delhi INDIA 110054

** Research Scholar, MMICT & BM, MM University
Mullana, Ambala, Haryana INDIA

*** VGAM Information Systems (P) Ltd., Faridabad

Abstract: Declarative queries are proving to be an attractive
paradigm for interacting with networks of wireless sensors.
But sensors do not exhaustively represent the data in the real
world. We have to map the raw sensor readings onto physical
reality. In this paper, we enrich interactive sensor querying
with statistical modelling techniques. We demonstrate that
such models can help provide answers that are both more
meaningful and more efficient to compute in both time and
energy. Our approach works on several real world sensor-
network data sets demonstrating that our model-based
approach provides a high-fidelity representation of the real
phenomena and leads to significant performance gains versus
traditional data acquisition techniques.

Keywords- Wireless Sensor Network, Database Query, Tiny DB,
TIDE

I. INTRODUCTION
Database technologies are starting to have a significant

impact in the emerging area of wireless sensor networks.
The area of sensornet querying represents an opportunity
for database researchers to apply their expertise in this area
of computer systems.

Declarative querying has proved powerful in allowing
programmers to program for an entire network of sensor
nodes rather than programming individual nodes. However,
the statement that “the sensornet is a database” is
misleading. Databases are treated as complete and
authoritative sources of information. Database query engine
answers a query based upon all the available data.
Applying this approach to sensornets results in two
problems:
1) Misrepresentations of data: In the sensornet environ-

ment, it is not possible to gather all the data. The real
world consists of a set of continuous phenomena in
both time and space. Hence, the set of relevant data is
in principle infinite. Sensing technologies acquire
samples of physical phenomena at discrete points in
time and space but the data acquired by the sensornet is
unlikely to be a random sample of physical processes,
for a number of reasons (non-uniform placement of
sensors in space, faulty sensors, high packet loss rates,
etc). So a straightforward interpretation of the

sensornet readings as a “database” may not be a
reliable representation of the real world.

2) Inefficient approximate queries: Since a sensornet
cannot acquire all possible data, any readings from a
sensornet are “approximate”, in the sense that they only
represent the true state of the world at the discrete in-
stants and locations where samples were acquired.
However, the leading approaches to query processing
in sensornets [30, 21] follow a completist’s approach,
acquiring as much data as possible from the
environment at a given point in time, even when most
of that data provides little benefit in approximate
answer quality.

2.1. Our contribution
In this paper, we propose to compensate for both of these
deficiencies by incorporating statistical models of real-
world processes into a sensornet query processing
architecture. The models can help provide more robust
interpretations of sensor readings. For example, they can
help identify sensors that are providing faulty data and can
extrapolate the values of missing sensors or sensor readings
at geographic locations where sensors are no longer
operational. Furthermore, models provide a framework for
optimizing the acquisition of sensor readings: sensors
should be used to acquire data only when the model itself is
not sufficiently rich to answer the query with acceptable
confidence.
Underneath this architectural shift in sensornet querying,
we define and address a key optimization problem: given a
query and a model, choose a data acquisition plan for the
sensornet to best refine the query answer. This optimization
problem is complicated by two forms of dependencies - one
in the statistical benefits of acquiring a reading and the
other in the system costs associated with wireless sensor
systems.
First, any non-trivial statistical model will capture correla-
tions among sensors: for example, the temperatures of
geographically proximate sensors are likely to be correlated.
Given such a model, the benefit of a single sensor reading
can be used to improve estimates of other readings: the
temperature at one sensor node is likely to improve the
confidence of model-driven estimates for nearby nodes.

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 503

The second form of dependency hinges on the connectivity
of the wireless sensor network. If the sensor node is not
within radio range of the query source then one cannot
acquire a reading from this node without forwarding the
request/result pair through another node which is near.
This presents not only a non-uniform cost model for
acquiring readings but one with dependencies, due to multi-
hop networking. The acquisition cost for near will be much
lower if one has already chosen to acquire data from the
node far by routing through near.
Here, we are building a prototype called TIDE that uses a
specific model based on time-varying multivariate
Gaussians. We explain how our model-based architecture
and querying techniques are specifically applied in TIDE.
We also present encouraging results on real-world
sensornet trace data, demonstrating the advantages that
models offer for queries over sensor networks.

II. OVERVIEW OF APPROACH
In this section, we provide an overview of our basic
architecture and approach, as well as a summary of TIDE.
Our architecture consists of a declarative query processing
engine that uses a probabilistic model to answer questions
about the current state of the sensor network. We describe a
model as a probability density function p(X1,X2, . . . ,Xn),
assigning a probability for each possible assignment to the
attributes X1, X2 . . ,Xn where each Xi is an attribute of a
particular sensor node(e.g., temperature on sensing node 7,
voltage on sensing node 14). Typically, there is one such
attribute per sensor type per sensing node. This model can
also incorporate hidden variables (i.e., variables that are not
directly observable),for example, whether a sensor is giving
faulty values. Such models can be learned from historical
data using standard algorithms.
Users query for information about the values of particular
attributes or in certain regions of the network as they would
in a traditional SQL database. Unlike database queries
sensornet queries request real time information about the
environment rather than information about a stored
collection of data. The model is used to estimate sensor
readings in the current time period; these estimates form the
answer of the query. In the process of generating these
estimates, the model may interrogate the sensor network for
updated readings that will help to refine estimates for which
its uncertainty is high. As time passes, the model may also
update its estimates of sensor values, to reflect expected
temporal changes in the data.
In TIDE, we use a specific model based on time-varying
multivariate Gaussians. We describe this model below.
However, our approach is general with respect to the
model and more or less complex models can be used
instead. The new models require no changes to the query
processor and can reuse code that interfaces with and
acquires particular readings from the sensor network.
Figure 1 illustrates our basic architecture through an
example.
Users submit SQL queries to the database. The queries
include error tolerances and target confidence bounds that
specify how much uncertainty the user is willing to tolerate.
Such bounds will be intuitive to many scientific and

technical users, as they are the same as the confidence
bounds used for reporting results in most scientific fields
(c.f., the graph-representation shown in the upper right of
Fig. 1). In this example the user is interested in estimates of
the value of sensor readings for nodes numbered 1 through
8, within .1 degrees C of the actual temperature reading
with 95% confidence. Based on the model, the system
decides that the most efficient way to answer the query with
the requested confidence is to read battery voltage from
sensors 1 and 2 and temperature from sensor 4. Based on
knowledge of the sensor network topology it generates an
observation plan that acquires samples in this order and
sends the plan into the network where the appropriate
readings are collected. These readings are used to update
the model, which can then be used to generate query
answers with specified confidence intervals.

Figure 1: Architecture for model-based querying in sensor
networks.

The model in this example chooses to observe the voltage at
some nodes despite the fact that the user’s query was over
temperature.

2.1. Confidence intervals and correlation models
The user in Figure 1 could have requested 100% confidence
and no error tolerance, in which case the model would have
required us to interrogate every sensor. The returned result
could still include some uncertainty as the model may not
have readings from particular sensors or locations at some
points in time (due to communications failures or lack of
sensor instrumentation at a particular location). These
confidence intervals computed from our probabilistic model
provide considerably more information than traditional
sensor network systems like TinyDB. With those systems,
the user would simply get no data regarding those missing
times and locations.

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 504

Figure 2: Trace of voltage and temperature readings over a
two day period from a single mote-based sensor.

Conversely, the user could have requested very wide
confidence bounds, in which case the model may have been
able to answer the query without acquiring any additional
data from the network. In fact, in our experiments with
TIDE on several real-world data sets, we see a number of
cases where strong correlations between sensors during
certain times of the day mean that even queries with
relatively tight confidence bounds can be answered with a
very small number of sensor observations. These tight
confidences can be provided despite the fact that sensor
readings have changed significantly. It is because known
correlations between sensors make it possible to predict
these changes: for example, in Figure 2, it is clear that the
temperature on the two sensors is correlated given the time
of day. During the daytime (e.g., readings 500-1000 and
2500-3000), sensor 20, which is placed near a window, is
consistently hotter than sensor 5, which is in the center of
our lab. A good model will be able to predict with high
confidence that during daytime hours, sensor readings on
sensor 20 are 1-2 degrees hotter than those at sensor 5
without actually observing sensor 20. This is in contrast to
existing sensor network querying systems where sensors are
continuously sampled and readings are always reported
whenever small absolute changes happen.
Typically in probabilistic modeling, we pick a class of
models, and use learning techniques to pick the best model
in the class. The problem of selecting the right model class
has been widely studied but can be difficult in some
applications. In general, a probabilistic model is only as
good at prediction as the data used to train it. Thus, it may
be the case that the temperature between sensors 1 and 23
would not show the same relationship during a different
season of the year, or in a different climate – in fact, one
might expect that when the outside temperature is very
cold, sensor 23 will read less than sensor 1 during the day,
just as it does during the night time. Hence, for the models
to perform accurate predictions they must be trained in the
kind of environment where they will be used. That does not
mean, however, that well-trained models cannot deal with
changing relationships over time. The model we use in
TIDE uses different correlation data depending on time of

day. For example, extending it to handle seasonal variations
is a straight forward extension of the techniques we use for
handling variations across hours of the day.
2.2. Networking model and observation plan format
Our initial implementation of TIDE focuses on static sensor
networks, such as those deployed for building and habitat
monitoring. For this reason, we assume that network
topologies change relatively slowly. We capture network
topology information when collecting data by including, for
each sensor, a vector of link quality estimates for
neighboring sensor nodes. We use this topology
information when constructing query plans by assuming
that nodes that were previously connected will still be there
in future. When executing a plan if we observe that a
particular link is not available (e.g., because one of the
sensors has failed) then we update our topology model
accordingly. We can continue to collect the new topology
information as we query the network so that new links will
also become available. This approach will be effective if the
topology is relatively stable; highly dynamic topologies will
need more sophisticated techniques.
In TIDE, observation plans consist of a list of sensor nodes
to visit, and, at each of these nodes, a (possibly empty) list
of attributes that need to be observed at that node. The
possibility of visiting a node but observing nothing is
included to allow plans to observe portions of the network
that are separated by multiple radio hops. We require that
plans begin and end at sensor id 0 (the root), which we
assume to be the node that interfaces the query processor to
the sensor network.

2.3. Cost model
During plan generation and optimization, we need to be
able to compare the relative costs of executing different
plans in the network. As energy is the primary concern in
battery powered sensornets [15, 26], our goal is to pick
plans of minimum energy cost. The primary contributors to
energy cost are communication and data acquisition from
sensors (CPU overheads beyond what is required when
acquiring and sending data are small because there is no
significant processing done on the nodes in our setting).

Sensor Energy Per

Sample (@3V), mJ
Solar Radiation [29]
Barometric Pressure [16]
Humidity and Temperature[28]
Voltage

.525
0.003
0.5
0.00009

Table 1 : Power Requirements Summary of Crossbow
MTS400 Sensorboard (From [20])

Our cost model uses numbers obtained from the data sheets
of sensors and the radio used on Mica2 motes with a
Crossbow MTS400 [6] environmental sensor board. For the
purposes of this model we assume that the sender and
receiver are well synchronized so that a listening sensor
turns on its radio just as a sending node begins transmitting.
On current generation motes the time required to send a
packet is 27 ms. The ChipCon CC1000 radio on motes uses
15 mW of energy in send and receive modes both, meaning

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 505

that both sender and receiver consume about .4 mJ of
energy. Table 1 summarizes the energy costs of acquiring
readings from various sensors available for motes. In this
paper, we primarily focus on temperature readings.
Assuming we are acquiring temperature readings (which
cost .5 J per sample), we compute the cost of a plan that
visits s nodes and acquires a readings to be (.4× 2)× s+.5× a
if there are no lost packets. Note that this cost treats the
entire network as a shared resource in which power needs to
be conserved equivalently on each mote. More
sophisticated cost models that take into account the relative
importance of nodes close to the root could be used, but an
exploration of such cost models is not needed to
demonstrate the utility of our approach.

III. EXPERIMENTAL RESULTS
In this section, we measure the performance of TIDE on
several real world data sets. Our goal is to demonstrate that
TIDE provides the ability to efficiently execute
approximate queries with user-specifiable confidences.
3.1. Data sets
Our results are based on running experiments over two real
world data sets that we have collected during the past few
months using TinyDB. The first data set, outside, is a one
month trace of 83,000 readings from 11 sensors in a
Botanical Garden. In this case, sensors were placed at 4
different altitudes in the tree, where they collected light,
humidity, temperature, and voltage readings once every 5
minutes. We split this data set into non-overlapping training
and test data sets (with 2/3 used for training) and build the
model on the training data. The second data set, inside, is a
trace of readings from 54 sensors in the lab. These sensors
collected light, humidity, temperature and voltage readings,
as well as network connectivity information that makes it
possible to reconstruct the network topology. Currently, the
data consists of 8 days of readings; we use the first 6 days
for training, and the last 2 for generating test traces.
3.2. Query workload
We report results for the two sets of query workloads-
Value Queries: The main type of queries that we anticipate
users would run on a such a system are queries asking to
report the sensor readings at all the sensors, within a
specified error bound € with a specified confidence ∂,
indicating that no more than a fraction 1−∂ of the readings
should deviate from their true value by €. As an example, a
typical query may ask for temperatures at all the sensors
within 0.5 degrees with 95% confidence.
Predicate Queries: The another set of queries that we use
are selection queries over the sensor readings where the
user asks for all sensors that satisfy a certain predicate and
once again specifies a desired confidence .
We also looked at average queries asking for averages over
the sensor readings.
Comparison systems
We compare the effectiveness of TIDE against two simple
strategies for answering such queries :
TinyDB-style Querying: In this model, the query is
disseminated into the sensor network using an overlay tree
structure [22], and at each mote, the sensor reading is
observed. The results are reported back to the base station

using the same tree, and are combined along the way back
to minimize communication cost.
Approximate-Caching: The base-station maintains a view
of the sensor readings at all motes that is guaranteed to be
within a certain interval of the actual sensor readings by
requiring the motes to report a sensor reading to the base
station if the value of the sensor falls outside this interval.
Note that, though this model saves communication cost by
not reporting readings if they do not change much, it does
not save acquisition costs as the motes are required to
observe the sensor values at every time step.
3.4. Methodology
TIDE is used to build a model of the training data. This
model includes a transition model for each hour of the day.
We generate traces from the test data by taking one reading
randomly for each hour and we issue one query against this
model per hour. The model computes the a priori
probabilities for each predicate (or € bound) being satisfied,
and chooses one or more additional sensor readings to
observe if the confidence bounds are not met. After
executing the generated observation plan over the network
(at some cost), TIDE updates the model with the observed
values from the test data and compares predicted values for
non-observed readings to the test data from that hour.
To measure the accuracy of our prediction with value
queries, we compute the average number of mistakes (per
hour) that TIDE made, i.e., how many of the reported
values are further away from the actual values than the
specified error bound. To measure the accuracy for
predicate queries we compute the number of predicates
whose truth value was incorrectly approximated.
For TinyDB, all queries are answered “correctly” (as we are
not modeling loss). Similarly, for approximate caching, a
value from the test data is reported when it deviates by
more than € from the last reported value from that sensor,
and as such, this approach does not make mistakes either.
We compute a cost for each observation plan as described
above; this includes both the attribute acquisition cost and
the communications cost. For most of our experiments, we
measure the accuracy of our model at predicting
temperature.
3.5. Outside dataset: Value-based queries
We begin by analyzing the performance of value queries on
the outside data set in detail to demonstrate the
effectiveness of our architecture. The query we use for this
experiment requires the system to report the temperatures at
all motes to within a specified epsilon, which we vary. In
these experiments we keep confidence constant at 95%.
Hence, we expect to see no more than 5% errors. Fig. 3
shows the relative cost and number of errors made for all
the three systems. We varied epsilon from between 0 and 1
degrees Celsius; as expected, the cost of TIDE (on the left
of the figure) falls rapidly as epsilon increases, and the
percentage of errors (shown on the right) stays well below
the specified confidence threshold of 5% (shown as the
horizontal line). Notice that for reasonable values of
epsilon, TIDE uses significantly less communication than
approximate caching or TinyDB, sometimes by an order of
magnitude. In this case, approximate caching always
reports the value to within epsilon, so it does not make

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 506

“mistakes”, although the average observation error in
approximate caching is close to TIDE (for example, in this
experiment, with epsilon=.5, approximate caching has a
root-mean squared error of .46, whereas TIDE this error is
.12; in other cases the relative performance is reversed).

Figure 3 : Fig. showing the relative costs of TIDE versus

TinyDB

Figure 4: Fig. showing the number of sensors observed

over time for varying epsilons.

Fig. 4 shows the percentage of sensors that TIDE observes
by hour with varying epsilon for the same set of outside
experiments. As epsilon gets small (less than .1 degrees) it
is necessary to observe all nodes on every query as the
variance between nodes is high enough that it cannot infer
the value of one sensor from other sensor’s readings with
such accuracy. On the other hand, for epsilons 1 or larger,
very few observations are needed, as the changes in one
sensor closely predict the values of other sensors. For
intermediate epsilons, more observations are needed,
especially during times when sensor readings change
dramatically. The spikes in this case correspond to morning
and evening, when temperature changes relatively quickly
as the sun comes up or goes down (hour 0 in this case is
midnight).
3.6. Outside Dataset: Cost vs. Confidence
For our next set of experiments, we again look at the
Outside data set, this time comparing the cost of plan
execution with confidence intervals ranging from 99% to
80%, with epsilon again varying between 0.1 and 1.0. The
results are shown in Figure 5(a) and (b). Figure 5(a) shows
that decreasing confidence intervals substantially reduces
the energy per query, as does decreasing epsilon. Note that
for a confidence of 95% with errors of just .5 degrees C we
can reduce expected per query energy costs from 5.4 J to
less than 150 mJ – a factor of 40 reduction. Figure 5(b)
shows that we meet or exceed our confidence interval in
almost all cases (except 99% confidence). It is not

surprising that we occasionally fail to satisfy these bounds
by a small amount, as variances in our training data are
somewhat different than variances in our test data.

Figure 5: Energy per query (a) and percentage of errors (b)

versus confidence interval size and epsilon.

We also ran experiments comparing (1) the performance of
the greedy algorithm vs. the optimal algorithm, and (2) the
performance of the dynamic (Kalman Filter) model that we
use vs. a static model that does not incorporate observations
made in the previous time steps into the model. As
expected, the greedy algorithm performs slightly worse that
the optimal algorithm, whereas using dynamic models
results in less observations than using static models.
3.7. Outside Dataset: Range queries
We ran a number of experiments with range queries (also
over the outside data set). Figure 6 summarizes the average
number of observations required for a 95% confidence with
three different range queries (temperature in [17,18],
temperature in [19,20], and temperature in [20,21]). In all
three cases, the actual error rates were all at or below 5%
(ranging from 1.5- 5%). Notice that different range queries
require observations at different times – for example,
during the set of readings just before hour 50, the three
queries make observations during three disjoint time
periods: early in the morning and late at night, the model
must make lots of observations to determine whether the
temperature is in the range 16-17, whereas during mid-day,
it is continually making observations for the range 20-21
but never for other ranges.

Figure 6: Graph showing TIDE’s performance on three

different range queries, for the garden data set with
confidence set to 95%.

3.8. Inside dataset
Similar experiments were also performed on the Inside
dataset, which because of the higher number of attributes in
it, is a more interesting dataset. Contrary to our initial
expectation, temperatures in the lab are actually harder to
predict compared to the outdoors; human intervention (in
particular, turning the air conditioning on and off)
introduces a lot of randomness in this data. We report one

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 507

set of experiments for this dataset, but defer a more detailed
study to future work.
Figure 7(a) shows the cost incurred in answering a value
query on this dataset, as the confidence bound is varied. For
comparative purposes, we also plot the cost of answering
the query using TinyDB. Once again, we see that as the
required confidence in answer drops, TIDE is able to
answer the query more efficiently, and is significantly more
cost-efficient than TinyDB for larger error bounds. Figure
7(b) shows that TIDE was able to achieve the specified
confidence bounds in almost all the cases.

Figure 7: Energy per query (a) and percentage of errors (b)

versus confidence interval size and epsilon for the Inside
Data.

IV. EXTENSIONS AND FUTURE DIRECTIONS

In this paper, we focused on the core architecture for
unifying probabilistic models with declarative queries. In
this section we outline several possible extensions.

Conditional plans: In our current prototype, once an
observation plan has been submitted to the sensor network,
it is executed to completion. A simple alternative would be
to generate plans that include early stopping conditions; a
more sophisticated approach would be to generate
conditional plans that explore different parts of the network
depending on the values of observed attributes. We have
begun exploring such conditional plans in a related project
[8].

More complex models: In particular, we are interested in
building models that can detect faulty sensors, both to
answer fault detection queries, and to give correct answers
to general queries in the presence of faults. This is an active
research topic in the machine learning community (e.g.,
[18]), and we expect that these techniques can be extended
to our domain.

Outliers: Our current approach does not work well for
outlier detection. To a first approximation, the only way to
detect outliers is to continuously sample sensors, as outliers
are fundamentally uncorrelated events. Thus, any outlier
detection scheme is likely to have a high sensing cost, but
we expect that our probabilistic techniques can still be used
to avoid excessive communication during times of normal
operation, as with the fault detection case.

Support for dynamic networks: Our current approach of
re-evaluating plans when the network topology changes

will not work well in highly dynamic networks. As a part of
our instrumentation of our lab space, we are beginning a
systematic study of how network topologies change over
time and as new sensors are added or existing sensors
move. We plan to use this information to extend our
exploration plans with simple topology change recovery
strategies that can be used to find alternate routes through
the network.
Continuous queries: Our current approach re-executes an
exploration plan that begins at the network root on every
query. For continuous queries that repeatedly request data
about the same sensors, it may be possible to install code in
the network that causes devices to periodically push
readings during times of high change (e.g., every morning
at 8 am).

V. RELATED WORK
There has been substantial work on approximate query
processing in the database community, often using model-
like synopses for query answering much as we rely on
probabilistic models. For example, the AQUA project [12,
10, 11] proposes a number of sampling-based synopses that
can provide approximate answers to a variety of queries
using a fraction of the total data in a database. As with
TIDE, such answers typically include tight bounds on the
correctness of answers. AQUA, however, is designed to
work in an environment where it is possible to generate an
independent random sample of data (something that is quite
tricky to do in sensor networks, as losses are correlated and
communicating random samples may require the
participation of a large part of the network). AQUA also
does not exploit correlations which mean that it lacks the
predictive power of representations based on probabilistic
models. [7, 9] propose exploiting data correlations through
use of graphical model techniques for approximate query
processing, but neither provide any guarantees in the
answers returned. Recently, Considine etal. have shown
that sketch based approximation techniques can be applied
in sensor networks [17].
Work on approximate caching by Olston et al., is also
related
[25, 24], in the sense that it provides a bounded
approximation
of the values of a number of cached objects (sensors, in our
case) at some server (the root of the sensor network). The
basic idea is that the server stores cached values along with
absolute bounds for the deviation of those values; when
objects notice that their values have gone outside the
bounds known to be stored at the server, they send an
update of our value. Unlike our approach, this work
requires the cached objects to continuously monitor their
values, which makes the energy overhead of this approach
considerable. It does, however, enable queries that detect
outliers, something TIDE currently cannot do.
There has been some recent work on approximate,
probabilistic querying in sensor networks and moving
object databases [3]. This work builds on the work by
Olston et al. in that objects update cached values when they
exceed some boundary condition, except that a pdf over the
range defined by the boundaries is also maintained to allow

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 508

queries that estimate the most likely value of a cached
object as well as an confidence on that uncertainty. As with
other approximation work, the notion of correlated values is
not exploited, and the requirement that readings be
continuously monitored introduces a high sampling
overhead.
Information Driven Sensor Querying (IDSQ) from Chu et
al. [4] uses probabilistic models for estimation of target
position in a tracking application. In IDSQ, sensors are
tasked in order according to maximally reduce the
positional uncertainty of a target, as measured, for example,
by the reduction in the principal components of a 2D
Gaussian.
Our prior work presented the notion of acquisitional query
processing(ACQP) [21] – that is, query processing in
environments like sensor networks where it is necessary to
be sensitive to the costs of acquiring data. The main goal of
an ACQP system is to avoid unnecessary data acquisition.
The techniques we present are very much in that spirit,
though the original work did not attempt to use probabilistic
techniques to avoid acquisition, and thus cannot directly
exploit correlations or provide confidence bounds.
TIDE is also inspired by prior work on Online Aggregation
[14] and other aspects of the CONTROL project [13]. The
basic idea in CONTROL is to provide an interface that
allows users to see partially complete answers with
confidence bounds for long running aggregate queries.
CONTROL did not attempt to capture correlations between
the different attributes, such that observing one attribute
had no effect on the systems confidence on any of the other
predicates.
The probabilistic querying techniques described here are
built on standard results in machine learning and statistics
(e.g., [27, 23, 5]). The optimization problem we address is a
generalization of the value of information problem [27].
This paper, however, proposes and evaluates the first
general architecture that combines model-based
approximate query answering with optimizing the data
gathered in a sensornet.

VI. CONCLUSIONS
In this paper, we proposed a novel architecture for
integrating a database system with a correlation-aware
probabilistic model. Rather than directly querying the
sensor network, we build a model from stored and current
readings, and answer SQL queries by consulting the model.
In a sensor network, this provides a number of advantages
including shielding the user from faulty sensors and
reducing the number of expensive sensor readings and radio
transmissions that the network must perform. Beyond the
encouraging, order-of-magnitude reductions in sampling
and communication cost offered by TIDE, we see our
general architecture as the proper platform for answering
queries and interpreting data from real world environments
like sensornets, as conventional database technology is
poorly equipped to deal with lossiness, noise, and non-
uniformity inherent in such environments.

REFERENCES
[1] IPSN 2004 Call for Papers. http://ipsn04.cs.uiuc.edu/

call_for_papers.html.
[2] SenSys2004 Call for Papers. http://www.cis.ohio-

state.edu/sensys04/.
[3] R. Cheng, S. Prabhakar and D. V. Kalashnikov. Evaluating

probabilistic queries over imprecise data. In SIGMOD 2003.
[4] M. Chu, F. Zhao and H. Haussecker. Scalable information-driven

sensor querying and routing for ad hoc heterogeneous sensor-
networks: In Journal of High Performance Computing Applications
2002.

[5] R. Cowell, S. Lauritzen, P. Dawid, and D. Spiegelhalter.
Probabilistic Networks and Expert Systems. Spinger New York
1999.

[6] Crossbow, Inc. Wireless sensor networks.
http://www.xbow.com/Products/Wireless_Sensor_Networks.htm.

[7] R. Rastogi , A. Deshpande and M. Garofalakis. Independence is
Good: Dependency-Based Histogram Synopses for High-
Dimensional Data. In SIGMOD, May 2001.

[8] A. Desphande, W. Hong, C. Guestrin, and S. Madden. Exploiting
correlated attributes in acquisitional query processing, Technical
report, Intel-Research Berkeley, 2004.

[9] B. Taskar, L. Getoor, and D. Koller. Selectivity estimation using
probabilistic models. In SIGMOD, May 2001.

[10] P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. In Proc. of VLDB, Sept
2001.

[11] M. Garofalakis and P. B. Gibbons. Approximate query processing:
Taming the terabytes (tutorial), September 2001.

[12] Y. Matias and P. B. Gibbons. New sampling based summary
statistics for improving approximate query answers. In SIGMOD
1998.

[13] A. Chou, J. M. Hellerstein, R. Avnur, C. Hidber, C. Olston, V.
Raman, T. Roth, and P. J. Haas. Interactive data analysis with
CONTROL, IEEE Computer 32(8) August 1999.

[14] J. M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation. In
SIGMOD, pages 171–182, Tucson, AZ, May 1997.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
In MobiCOM Boston MA, August 2000.

[16] Intersema. Ms5534a barometer module. Technical report, October
2002 http://www.intersema.com/pro/module/file/da5534.pdf.

[17] G. Kollios, J. Considine, F. Li, and J. Byers. Approximate
aggregation techniques for sensor databases. In ICDE 2004.

[18] U. Lerner, B. Moses, M. Scott, S. McIlraith, and D. Koller.
Monitoring a complex physical system using a hybrid dynamic bayes
net. In UAI, 2002.

[19] S. Lin and B. Kernighan. An effective heuristic algorithm for the tsp.
Operations Research, 21:498–516, 1971.

[20] S. Madden. The design and evaluation of a query processing
architecture for sensor networks. Master’s thesis, UC Berkeley, 2003.

[21] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks. In
ACM SIGMOD, 2003.

[22] S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin. TinyDB
web page. http://telegraph.cs.berkeley.edu/tinydb.

[23] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[24] C. Olston and J.Widom. Best effort cache sychronization with

source cooperation. SIGMOD, 2002.
[25] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for

cached approximate values. In ACM SIGMOD, May 2001.
[26] G. Pottie andW. Kaiser. Wireless integrated network sensors.

Communications of the ACM, 43(5):51 – 58, May 2000.
[27] S. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 1994.
[28] Sensirion. Sht11/15 relative humidity sensor. Technical report, June

2002.
http://www.sensirion.com/en/pdf/Datasheet_SHT1x_SHT7x_0206.p
df.

[29] TAOS, Inc. Tsl2550 ambient light sensor. Technical report,
September 2002. http://www.taosinc.com/pdf/tsl2550-E39.pdf.

[30] Y. Yao and J. Gehrke. Query processing in sensor networks. In
Conference on Innovative Data Systems Research (CIDR), 2003.

Geeta Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 503-509

www.ijcsit.com 509

