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Abstract: Declarative queries are proving to be an attractive 
paradigm for interacting with networks of wireless sensors. 
But sensors do not exhaustively represent the data in the real 
world. We have to map the raw sensor readings onto physical 
reality. In this paper, we enrich interactive sensor querying 
with statistical modelling techniques. We demonstrate that 
such models can help provide answers that are both more 
meaningful and more efficient to compute in both time and 
energy. Our approach works on several real world sensor-
network data sets demonstrating that our model-based 
approach provides a high-fidelity representation of the real 
phenomena and leads to significant performance gains versus 
traditional data acquisition techniques. 

Keywords- Wireless Sensor Network, Database Query, Tiny DB, 
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I. INTRODUCTION 
Database technologies are starting to have a significant 

impact in the emerging area of wireless sensor networks. 
The area of sensornet querying represents an opportunity 
for database researchers to apply their expertise in this area 
of computer systems. 

Declarative querying has proved powerful in allowing 
programmers to program for an entire network of sensor 
nodes rather than programming individual nodes. However, 
the statement that “the sensornet is a database” is 
misleading. Databases are treated as complete and 
authoritative sources of information. Database query engine 
answers a query  based upon all the available data. 
Applying this approach to sensornets results in two 
problems: 
1) Misrepresentations of data: In the sensornet environ-

ment, it is not possible to gather all the data. The real 
world consists of a set of continuous phenomena in 
both time and space. Hence, the set of relevant data is 
in principle infinite. Sensing technologies acquire 
samples of physical phenomena at discrete points in 
time and space but the data acquired by the sensornet is 
unlikely to be a random sample of physical processes, 
for a number of reasons (non-uniform placement of 
sensors in space, faulty sensors, high packet loss rates, 
etc). So a straightforward interpretation of the 

sensornet readings as a “database” may not be a 
reliable representation of the real world. 

2) Inefficient approximate queries: Since a sensornet
cannot acquire all possible data, any readings from a 
sensornet are “approximate”, in the sense that they only 
represent the true state of the world at the discrete in-
stants and locations where samples were acquired. 
However, the leading approaches to query processing 
in sensornets [30, 21] follow a completist’s approach, 
acquiring as much data as possible from the 
environment at a given point in time, even when most 
of that data provides little benefit in approximate 
answer quality.  

2.1. Our contribution 
In this paper, we propose to compensate for both of these 
deficiencies by incorporating statistical models of real-
world processes into a sensornet query processing 
architecture. The models can help provide more robust 
interpretations of sensor readings. For example, they can 
help identify sensors that are providing faulty data  and can 
extrapolate the values of missing sensors or sensor readings 
at geographic locations where sensors are no longer 
operational. Furthermore, models provide a framework for 
optimizing the acquisition of sensor readings: sensors 
should be used to acquire data only when the model itself is 
not sufficiently rich to answer the query with acceptable 
confidence.  
Underneath this architectural shift in sensornet querying, 
we define and address a key optimization problem: given a 
query and a model, choose a data acquisition plan for the 
sensornet to best refine the query answer. This optimization 
problem is complicated by two forms of dependencies - one 
in the statistical benefits of acquiring a reading and the 
other in the system costs associated with wireless sensor 
systems. 
First, any non-trivial statistical model will capture correla-
tions among sensors: for example, the temperatures of 
geographically proximate sensors are likely to be correlated. 
Given such a model, the benefit of a single sensor reading 
can be used to improve estimates of other readings: the 
temperature at one sensor node is likely to improve the 
confidence of model-driven estimates for nearby nodes. 
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The second form of dependency hinges on the connectivity 
of the wireless sensor network. If the sensor node  is not 
within radio range of the query source  then one cannot 
acquire a reading from this node without forwarding the 
request/result pair through another node which is near. 
This presents not only a non-uniform cost model for 
acquiring readings but one with dependencies, due to multi-
hop networking. The acquisition cost for near will be much 
lower if one has already chosen to acquire data from the 
node far by routing through near.  
Here, we are building a prototype called TIDE that uses a 
specific model based on time-varying multivariate 
Gaussians. We explain how our model-based architecture 
and querying techniques are specifically applied in TIDE. 
We also present encouraging results on real-world 
sensornet trace data, demonstrating the advantages that 
models offer for queries over sensor networks. 
 

II. OVERVIEW OF APPROACH 
In this section, we provide an overview of our basic 
architecture and approach, as well as a summary of TIDE. 
Our architecture consists of a declarative query processing 
engine that uses a probabilistic model to answer questions 
about the current state of the sensor network. We describe a 
model as a probability density function  p(X1,X2, . . . ,Xn), 
assigning a probability for each possible assignment to the 
attributes X1, X2 . . ,Xn where each Xi is an attribute of a 
particular sensor node(e.g., temperature on sensing node 7, 
voltage on sensing node 14). Typically, there is one such 
attribute per sensor type per sensing node. This model can 
also incorporate hidden variables (i.e., variables that are not 
directly observable),for example, whether a sensor is giving 
faulty values. Such models can be learned from historical 
data using standard algorithms. 
Users query for information about the values of particular 
attributes or in certain regions of the network as they would 
in a traditional SQL database. Unlike database queries  
sensornet queries request real time information about the 
environment  rather than information about a stored 
collection of data. The model is used to estimate sensor 
readings in the current time period; these estimates form the 
answer of the query. In the process of generating these 
estimates, the model may interrogate the sensor network for 
updated readings that will help to refine estimates for which 
its uncertainty is high. As time passes, the model may also 
update its estimates of sensor values, to reflect expected 
temporal changes in the data. 
In TIDE, we use a specific model based on time-varying 
multivariate Gaussians. We describe this model below.   
However,  our approach is general with respect to the 
model and  more or less complex models can be used 
instead. The new models require no changes to the query 
processor and can reuse code that interfaces with and 
acquires particular readings from the sensor network. 
Figure 1 illustrates our basic architecture through an 
example. 
Users submit SQL queries to the database. The queries 
include error tolerances and target confidence bounds that 
specify how much uncertainty the user is willing to tolerate. 
Such bounds will be intuitive to many scientific and 

technical users, as they are the same as the confidence 
bounds used for reporting results in most scientific fields 
(c.f., the graph-representation shown in the upper right of 
Fig. 1). In this example  the user is interested in estimates of 
the value of sensor readings for nodes numbered 1 through 
8, within .1 degrees C of the actual temperature reading 
with 95% confidence. Based on the model, the system 
decides that the most efficient way to answer the query with 
the requested confidence is to read battery voltage from 
sensors 1 and 2 and temperature from sensor 4. Based on 
knowledge of the sensor network topology it generates an 
observation plan that acquires samples in this order and 
sends the plan into the network where the appropriate 
readings are collected. These readings are used to update 
the model, which can then be used to generate query 
answers with specified confidence intervals. 
 

 
Figure 1: Architecture for model-based querying in sensor 
networks. 
 
The model in this example chooses to observe the voltage at 
some nodes despite the fact that the user’s query was over 
temperature.  
 
2.1.  Confidence intervals and correlation models 
The user in Figure 1 could have requested 100% confidence 
and no error tolerance, in which case the model would have 
required us to interrogate every sensor. The returned result 
could still include some uncertainty as the model may not 
have readings from particular sensors or locations at some 
points in time (due to communications failures or lack of 
sensor instrumentation at a particular location). These 
confidence intervals computed from our probabilistic model 
provide considerably more information than traditional 
sensor network systems like TinyDB. With those systems, 
the user would simply get no data regarding those missing 
times and locations.  
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Figure 2: Trace of voltage and temperature readings over a 
two day period from a single mote-based sensor. 

 
Conversely, the user could have requested very wide 
confidence bounds, in which case the model may have been 
able to answer the query without acquiring any additional 
data from the network. In fact, in our experiments with 
TIDE on several real-world data sets, we see a number of 
cases where strong correlations between sensors during 
certain times of the day mean that even queries with 
relatively tight confidence bounds can be answered with a 
very small number of sensor observations. These tight 
confidences can be provided despite the fact that sensor 
readings have changed significantly. It is because known 
correlations between sensors make it possible to predict 
these changes: for example, in Figure 2, it is clear that the 
temperature on the two sensors is correlated given the time 
of day. During the daytime (e.g., readings 500-1000 and 
2500-3000), sensor 20, which is placed near a window, is 
consistently hotter than sensor  5, which is in the center of 
our lab. A good model will be able to predict with high 
confidence that during daytime hours, sensor readings on 
sensor 20 are 1-2 degrees hotter than those at sensor 5 
without actually observing sensor 20. This is in contrast to 
existing sensor network querying systems where sensors are 
continuously sampled and readings are always reported 
whenever small absolute changes happen. 
Typically in probabilistic modeling, we pick a class of 
models, and use learning techniques to pick the best model 
in the class. The problem of selecting the right model class 
has been widely studied but can be difficult in some 
applications. In general, a probabilistic model is only as 
good at prediction as the data used to train it. Thus, it may 
be the case that the temperature between sensors 1 and 23 
would not show the same relationship during a different 
season of the year, or in a different climate – in fact, one 
might expect that when the outside temperature is very 
cold, sensor 23 will read less than sensor 1 during the day, 
just as it does during the night time. Hence, for the models 
to perform accurate predictions they must be trained in the 
kind of environment where they will be used. That does not 
mean, however, that well-trained models cannot deal with 
changing relationships over time. The model we use in 
TIDE uses different correlation data depending on time of 

day. For example, extending it to handle seasonal variations 
is a straight forward extension of the techniques we use for 
handling variations across hours of the day. 
2.2. Networking model and observation plan format 
Our initial implementation of TIDE focuses on static sensor 
networks, such as those deployed for building and habitat 
monitoring. For this reason, we assume that network 
topologies change relatively slowly. We capture network 
topology information when collecting data by including, for 
each sensor, a vector of link quality estimates for 
neighboring sensor nodes. We use this topology 
information when constructing query plans by assuming 
that nodes that were previously connected will still be there 
in future. When executing a plan if we observe that a 
particular link is not available (e.g., because one of the 
sensors has failed) then we update our topology model 
accordingly. We can continue to collect the new topology 
information as we query the network so that new links will 
also become available. This approach will be effective if the 
topology is relatively stable; highly dynamic topologies will 
need more sophisticated techniques. 
In TIDE, observation plans consist of a list of sensor nodes 
to visit, and, at each of these nodes, a (possibly empty) list 
of attributes that need to be observed at that node. The 
possibility of visiting a node but observing nothing is 
included to allow plans to observe portions of the network 
that are separated by multiple radio hops. We require that 
plans begin and end at sensor id 0 (the root), which we 
assume to be the node that interfaces the query processor to 
the sensor network. 
 
2.3.  Cost model 
During plan generation and optimization, we need to be 
able to compare the relative costs of executing different 
plans in the network. As energy is the primary concern in 
battery powered sensornets [15, 26], our goal is to pick 
plans of minimum energy cost. The primary contributors to 
energy cost are communication and data acquisition from 
sensors (CPU overheads beyond what is required when 
acquiring and sending data are small because there is no 
significant processing done on the nodes in our setting). 
 
Sensor Energy Per 

Sample (@3V), mJ
Solar Radiation [29] 
Barometric Pressure [16] 
Humidity and Temperature[28] 
Voltage 

.525 
0.003 
0.5 
0.00009 

Table 1 : Power Requirements Summary of Crossbow 
MTS400 Sensorboard (From [20]) 
 
Our cost model uses numbers obtained from the data sheets 
of sensors and the radio used on Mica2 motes with a 
Crossbow MTS400 [6] environmental sensor board. For the 
purposes of this model we assume that the sender and 
receiver are well synchronized so that a listening sensor 
turns on its radio just as a sending node begins transmitting. 
On current generation motes the time required to send a 
packet is 27 ms. The ChipCon CC1000 radio on motes uses 
15 mW of energy in send and receive modes both, meaning 
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that both sender and receiver consume about .4 mJ of 
energy. Table 1 summarizes the energy costs of acquiring 
readings from various sensors available for motes. In this 
paper, we primarily focus on temperature readings. 
Assuming we are acquiring temperature readings (which 
cost .5 J per sample), we compute the cost of a plan that 
visits s nodes and acquires a readings to be (.4× 2)× s+.5× a 
if there are no lost packets. Note that this cost treats the 
entire network as a shared resource in which power needs to 
be conserved equivalently on each mote. More 
sophisticated cost models that take into account the relative 
importance of nodes close to the root could be used, but an 
exploration of such cost models is not needed to 
demonstrate the utility of our approach. 
 

III. EXPERIMENTAL RESULTS 
In this section, we measure the performance of TIDE on 
several real world data sets. Our goal is to demonstrate that 
TIDE provides the ability to efficiently execute 
approximate queries with user-specifiable confidences. 
3.1.  Data sets 
Our results are based on running experiments over two real 
world data sets that we have collected during the past few 
months using TinyDB. The first data set, outside, is a one 
month trace of 83,000 readings from 11 sensors in a  
Botanical Garden. In this case, sensors were placed at 4 
different altitudes in the tree, where they collected light, 
humidity, temperature, and voltage readings once every 5 
minutes. We split this data set into non-overlapping training 
and test data sets (with 2/3 used for training) and build the 
model on the training data. The second data set, inside, is a 
trace of readings from 54 sensors in the lab. These sensors 
collected light, humidity, temperature and voltage readings, 
as well as network connectivity information that makes it 
possible to reconstruct the network topology. Currently, the 
data consists of 8 days of readings; we use the first 6 days 
for training, and the last 2 for generating test traces. 
3.2. Query workload 
We report results for the two sets of query workloads- 
Value Queries: The main type of queries that we anticipate 
users would run on a such a system are queries asking to 
report the sensor readings at all the sensors, within a 
specified error bound € with a specified confidence ∂, 
indicating that no more than a fraction 1−∂ of the readings 
should deviate from their true value by €. As an example, a 
typical query may ask for temperatures at all the sensors 
within 0.5 degrees with 95% confidence. 
Predicate Queries: The another set of queries that we use 
are selection queries over the sensor readings where the 
user asks for all sensors that satisfy a certain predicate and 
once again specifies a desired confidence . 
We also looked at average queries asking for averages over 
the sensor readings.  
Comparison systems 
We compare the effectiveness of TIDE against two simple 
strategies for answering such queries : 
TinyDB-style Querying: In this model, the query is 
disseminated into the sensor network using an overlay tree 
structure [22], and at each mote, the sensor reading is 
observed. The results are reported back to the base station 

using the same tree, and are combined along the way back 
to minimize communication cost. 
Approximate-Caching: The base-station maintains a view 
of the sensor readings at all motes that is guaranteed to be 
within a certain interval of the actual sensor readings by 
requiring the motes to report a sensor reading to the base 
station if the value of the sensor falls outside this interval. 
Note that, though this model saves communication cost by 
not reporting readings if they do not change much, it does 
not save acquisition costs as the motes are required to 
observe the sensor values at every time step.  
3.4. Methodology 
TIDE is used to build a model of the training data. This 
model includes a transition model for each hour of the day. 
We generate traces from the test data by taking one reading 
randomly for each hour and we issue one query against this 
model per hour. The model computes the a priori 
probabilities for each predicate (or € bound) being satisfied, 
and chooses one or more additional sensor readings to 
observe if the confidence bounds are not met. After 
executing the generated observation plan over the network 
(at some cost), TIDE updates the model with the observed 
values from the test data and compares predicted values for 
non-observed readings to the test data from that hour. 
To measure the accuracy of our prediction with value 
queries, we compute the average number of mistakes (per 
hour) that TIDE made, i.e., how many of the reported 
values are further away from the actual values than the 
specified error bound. To measure the accuracy for 
predicate queries we compute the number of predicates 
whose truth value was incorrectly approximated. 
For TinyDB, all queries are answered “correctly” (as we are 
not modeling loss). Similarly, for approximate caching, a 
value from the test data is reported when it deviates by 
more than € from the last reported value from that sensor, 
and as such, this approach does not make mistakes either. 
We compute a cost for each observation plan as described 
above; this includes both the attribute acquisition cost and 
the communications cost. For most of our experiments, we 
measure the accuracy of our model at predicting 
temperature. 
3.5. Outside dataset: Value-based queries 
We begin by analyzing the performance of value queries on 
the outside data set in detail to demonstrate the 
effectiveness of our architecture. The query we use for this 
experiment requires the system to report the temperatures at 
all motes to within a specified epsilon, which we vary. In 
these experiments we keep confidence constant at 95%. 
Hence, we expect to see no more than 5% errors. Fig. 3 
shows the relative cost and number of errors made for all 
the three systems. We varied epsilon from between 0 and 1 
degrees Celsius; as expected, the cost of TIDE (on the left 
of the figure) falls rapidly as epsilon increases, and the 
percentage of errors (shown on the right) stays well below 
the specified confidence threshold of 5% (shown as the 
horizontal line). Notice that for reasonable values of 
epsilon, TIDE uses significantly less communication than 
approximate caching or TinyDB, sometimes by an order of 
magnitude. In this case, approximate caching always 
reports the value to within epsilon, so it does not make 
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“mistakes”, although the average observation error in 
approximate caching is close to TIDE (for example, in this 
experiment, with epsilon=.5, approximate caching has a 
root-mean squared error of .46, whereas TIDE this error is 
.12; in other cases the relative performance is reversed). 
 

 
Figure 3 : Fig. showing the relative costs of TIDE versus 

TinyDB 
 

 
Figure 4: Fig. showing the number of sensors observed 

over time for varying epsilons. 
 

Fig. 4 shows the percentage of sensors that TIDE observes 
by hour with varying epsilon for the same set of outside 
experiments. As epsilon gets small (less than .1 degrees) it 
is necessary to observe all nodes on every query as the 
variance between nodes is high enough that it cannot infer 
the value of one sensor from other sensor’s readings with 
such accuracy. On the other hand, for epsilons 1 or larger, 
very few observations are needed, as the changes in one 
sensor closely predict the values of other sensors. For 
intermediate epsilons, more observations are needed, 
especially during times when sensor readings change 
dramatically. The spikes in this case correspond to morning 
and evening, when temperature changes relatively quickly 
as the sun comes up or goes down (hour 0 in this case is 
midnight). 
3.6.  Outside Dataset: Cost vs. Confidence 
For our next set of experiments, we again look at the 
Outside data set, this time comparing the cost of plan 
execution with confidence intervals ranging from 99% to 
80%, with epsilon again varying between 0.1 and 1.0. The 
results are shown in Figure 5(a) and (b). Figure 5(a) shows 
that decreasing confidence intervals substantially reduces 
the energy per query, as does decreasing epsilon. Note that 
for a confidence of 95% with errors of just .5 degrees C we 
can reduce expected per query energy costs from 5.4 J to 
less than 150 mJ – a factor of 40 reduction. Figure 5(b) 
shows that we meet or exceed our confidence interval in 
almost all cases (except 99% confidence). It is not 

surprising that we occasionally fail to satisfy these bounds 
by a small amount, as variances in our training data are 
somewhat different than variances in our test data.  

 
Figure 5: Energy per query (a) and percentage of errors (b) 

versus confidence interval size and epsilon. 
 

We also ran experiments comparing (1) the performance of 
the greedy algorithm vs. the optimal algorithm, and (2) the 
performance of the dynamic (Kalman Filter) model that we 
use vs. a static model that does not incorporate observations 
made in the previous time steps into the model. As 
expected, the greedy algorithm performs slightly worse that 
the optimal algorithm, whereas using dynamic models 
results in less observations than using static models.  
3.7. Outside Dataset: Range queries 
We ran a number of experiments with range queries (also 
over the outside data set). Figure 6 summarizes the average 
number of observations required for a 95% confidence with 
three different range queries (temperature in [17,18], 
temperature in [19,20], and temperature in [20,21]). In all 
three cases, the actual error rates were all at or below 5% 
(ranging from 1.5- 5%). Notice that different range queries 
require observations at different times – for example, 
during the set of readings just before hour 50, the three 
queries make observations during three disjoint time 
periods: early in the morning and late at night, the model 
must make lots of observations to determine whether the 
temperature is in the range 16-17, whereas during mid-day, 
it is continually making observations for the range 20-21 
but never for other ranges. 

 
Figure 6: Graph showing TIDE’s performance on three 

different range queries, for the garden data set with 
confidence set to 95%. 

3.8. Inside dataset 
Similar experiments were also performed on the Inside 
dataset, which because of the higher number of attributes in 
it, is a more interesting dataset. Contrary to our initial 
expectation, temperatures in the lab are actually harder to 
predict compared to the outdoors; human intervention (in 
particular, turning the air conditioning on and off) 
introduces a lot of randomness in this data. We report one 
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set of experiments for this dataset, but defer a more detailed 
study to future work. 
Figure 7(a) shows the cost incurred in answering a value 
query on this dataset, as the confidence bound is varied. For 
comparative purposes, we also plot the cost of answering 
the query using TinyDB. Once again, we see that  as the 
required confidence in answer drops, TIDE is able to 
answer the query more efficiently, and is significantly more 
cost-efficient than TinyDB for larger error bounds. Figure 
7(b) shows that TIDE was able to achieve the specified 
confidence bounds in almost all the cases. 
 

 
Figure 7: Energy per query (a) and percentage of errors (b) 

versus confidence interval size and epsilon for the Inside 
Data. 

 
IV. EXTENSIONS AND FUTURE DIRECTIONS 

In this paper, we focused on the core architecture for 
unifying probabilistic models with declarative queries. In 
this section we outline several possible extensions. 
 
Conditional plans: In our current prototype, once an 
observation plan has been submitted to the sensor network, 
it is executed to completion. A simple alternative would be 
to generate plans that include early stopping conditions; a 
more sophisticated approach would be to generate 
conditional plans that explore different parts of the network 
depending on the values of observed attributes. We have 
begun exploring such conditional plans in a related project 
[8]. 
 
More complex models: In particular, we are interested in 
building models that can detect faulty sensors, both to 
answer fault detection queries, and to give correct answers 
to general queries in the presence of faults. This is an active 
research topic in the machine learning community (e.g., 
[18]), and we expect that these techniques can be extended 
to our domain. 
 
Outliers: Our current approach does not work well for 
outlier detection. To a first approximation, the only way to 
detect outliers is to continuously sample sensors, as outliers 
are fundamentally uncorrelated events. Thus, any outlier 
detection scheme is likely to have a high sensing cost, but 
we expect that our probabilistic techniques can still be used 
to avoid excessive communication during times of normal 
operation, as with the fault detection case. 
 
Support for dynamic networks: Our current approach of 
re-evaluating plans when the network topology changes 

will not work well in highly dynamic networks. As a part of 
our instrumentation of our lab space, we are beginning a 
systematic study of how network topologies change over 
time and as new sensors are added or existing sensors 
move. We plan to use this information to extend our 
exploration plans with simple topology change recovery 
strategies that can be used to find alternate routes through 
the network. 
Continuous queries: Our current approach re-executes an 
exploration plan that begins at the network root on every 
query. For continuous queries that repeatedly request data 
about the same sensors, it may be possible to install code in 
the network that causes devices to periodically push 
readings during times of high change (e.g., every morning 
at 8 am). 
 

V. RELATED WORK 
There has been substantial work on approximate query 
processing in the database community, often using model-
like synopses for query answering much as we rely on 
probabilistic models. For example, the AQUA project [12, 
10, 11] proposes a number of sampling-based synopses that 
can provide approximate answers to a variety of queries 
using a fraction of the total data in a database. As with 
TIDE, such answers typically include tight bounds on the 
correctness of answers. AQUA, however, is designed to 
work in an environment where it is possible to generate an 
independent random sample of data (something that is quite 
tricky to do in sensor networks, as losses are correlated and 
communicating random samples may require the 
participation of a large part of the network). AQUA also 
does not exploit correlations which mean that it lacks the 
predictive power of representations based on probabilistic 
models. [7, 9] propose exploiting data correlations through 
use of graphical model techniques for approximate query 
processing, but neither provide any guarantees in the 
answers returned. Recently,  Considine etal. have shown 
that sketch based approximation techniques can be applied 
in sensor networks [17]. 
Work on approximate caching by Olston et al., is also 
related 
[25, 24], in the sense that it provides a bounded 
approximation 
of the values of a number of cached objects (sensors, in our 
case) at some server (the root of the sensor network). The 
basic idea is that the server stores cached values along with 
absolute bounds for the deviation of those values; when 
objects notice that their values have gone outside the 
bounds known to be stored at the server, they send an 
update of our value. Unlike our approach, this work 
requires the cached objects to continuously monitor their 
values, which makes the energy overhead of this approach 
considerable. It does, however, enable queries that detect 
outliers, something TIDE currently cannot do. 
There has been some recent work on approximate, 
probabilistic querying in sensor networks and moving 
object databases [3]. This work builds on the work by 
Olston et al. in that objects update cached values when they 
exceed some boundary condition, except that a pdf over the 
range defined by the boundaries is also maintained to allow 
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queries that estimate the most likely value of a cached 
object as well as an confidence on that uncertainty. As with 
other approximation work, the notion of correlated values is 
not exploited, and the requirement that readings be 
continuously monitored introduces a high sampling 
overhead. 
Information Driven Sensor Querying (IDSQ) from Chu et 
al. [4] uses probabilistic models for estimation of target 
position in a tracking application. In IDSQ, sensors are 
tasked in order according to maximally reduce the 
positional uncertainty of a target, as measured, for example, 
by the reduction in the principal components of a 2D 
Gaussian. 
Our prior work presented the notion of acquisitional query 
processing(ACQP) [21] – that is, query processing in 
environments like sensor networks where it is necessary to 
be sensitive to the costs of acquiring data. The main goal of 
an ACQP system is to avoid unnecessary data acquisition. 
The techniques we present are very much in that spirit, 
though the original work did not attempt to use probabilistic 
techniques to avoid acquisition, and thus cannot directly 
exploit correlations or provide confidence bounds. 
TIDE is also inspired by prior work on Online Aggregation 
[14] and other aspects of the CONTROL project [13]. The 
basic idea in CONTROL is to provide an interface that 
allows users to see partially complete answers with 
confidence bounds for long running aggregate queries. 
CONTROL did not attempt to capture correlations between 
the different attributes, such that observing one attribute 
had no effect on the systems confidence on any of the other 
predicates. 
The probabilistic querying techniques described here are 
built on standard results in machine learning and statistics 
(e.g., [27, 23, 5]). The optimization problem we address is a 
generalization of the value of information problem [27]. 
This paper, however, proposes and evaluates the first 
general architecture that combines model-based 
approximate query answering with optimizing the data 
gathered in a sensornet. 
 

VI. CONCLUSIONS 
In this paper, we proposed a novel architecture for 
integrating a database system with a correlation-aware 
probabilistic model. Rather than directly querying the 
sensor network, we build a model from stored and current 
readings, and answer SQL queries by consulting the model. 
In a sensor network, this provides a number of advantages 
including shielding the user from faulty sensors and 
reducing the number of expensive sensor readings and radio 
transmissions that the network must perform. Beyond the 
encouraging, order-of-magnitude reductions in sampling 
and communication cost offered by TIDE, we see our 
general architecture as the proper platform for answering 
queries and interpreting data from real world environments 
like sensornets, as conventional database technology is 
poorly equipped to deal with lossiness, noise, and non-
uniformity inherent in such environments. 
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